If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^+x^2=24
We move all terms to the left:
14x^+x^2-(24)=0
We add all the numbers together, and all the variables
x^2+14x-24=0
a = 1; b = 14; c = -24;
Δ = b2-4ac
Δ = 142-4·1·(-24)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{73}}{2*1}=\frac{-14-2\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{73}}{2*1}=\frac{-14+2\sqrt{73}}{2} $
| -4(x+8)=12-2(x-9) | | -5(x-7)=-9(x-5) | | 3x-7(×+3)=-13 | | 5b-9+2b+9=21 | | 79=(9x-4) | | 7x+10(2x+9)=36 | | 1/2y-10=1/9y | | 6x-5+7x=5x+7 | | 2x+25-x=12-3x+5 | | (7x-2)=(2x+4) | | 3*(x+1)+x=1+4x | | 36=-4a | | 62+(2+3x)=180 | | (9x-38)=(2x+42) | | 3x+4-4x=12 | | 12=8-4(-6x-3) | | 18n=12=27n+3 | | 8n2+4n−16=−n2 | | -x+6=-4+4x | | 6(x+5)+4=-6(x-10)-10 | | 6x-32/3=2/3x+7 | | X+1-2-x-3=7-1 | | -1/3=2/7x-2/5x | | (5x+4)=(8x-71) | | 7x=317 | | 3=-3/4x+10-7/4x | | 8-p=3p-6p | | 5x2+9x=-4 | | 11-1/2s=-13 | | 4y+6+6y+24=180 | | -3x+(x-7)=2(x+11) | | 10x/15=9x/15 |